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small r, Hi(m,2*) goes to zero, the self-energy of the 
vacancy being canceled, while as r—»oo the only 
energy is the vacancy-lattice self-energy. 

To continue in the spirit of Haken we fit #j(ra2*) 
to an exponential such that it behaves properly for 
large and small r, the result being 

Hi(m*)™ ( e y 2 e * r ) [ l - < r 2 ^ ] - (e2/€*a) . (A7) 

The exponential fit is not too good for r< a but in the 
region of interest is sufficiently accurate. 

The last terms in Eqs. (A4) and (A7) are the self-
energies of the electron and vacancy due to the polariza-

INTRODUCTION 

IN an insulating crystal with more than one infrared 
active mode, the reflectivity in the restrahlen region 

is often quite well reproduced by a formula involving 
the sum of contributions from independent classical 
oscillators.1 There are notable exceptions, however. 
The high dielectric constant materials BaTiOs, SrTiOs, 
and KTaOs provide a striking example. In fitting 
independent classical oscillator expressions one is 
immediately faced with compromises when choosing 
the damping constants for some modes. For example, 
near 21-/x wavelength in the case of SrTi03, the reflectiv­
ity shows a dip to a value of less than 1%. The low 
damping indicated by this dip is inconsistent with the 
large damping nearby.2 Figure 1 shows SrTi03 reflectiv-

* Work supported in part by the National Science Foundation. 
1W. G. Spitzer and D. A. Kleinman, Phys. Rev. 121, 1324 

(1961). 
2 In general, such dips occur at the frequency where e', the real 

part of the dielectric constant, is passing through the value e' = 1 

tion of the lattice. These negative terms outside the 
potential well are equivalent to a change in the zero 
of energy inside, and in fact these terms derived from 
polaron theory are analogous to the last term in W, 
Eq. (5). Thus to be perfectly consistent one should, 
when using the Haken dielectric constant, replace the 
last term in W by the quantity (e2/e*)[(v/2)+(l/a)J 
This we have not done. For the large-orbit state the 
terms in question are approximately equal, since v/2 
<Kl/a and e*/e*a~e2/e*R. However, in treating a 
smaller-radius excited state one should use the Haken 
self-energy. 

ity data and the best over-all classical oscillator fit.3 

The fit can be improved near 21 fx by decreasing the 
damping constant of the highest frequency mode. This 
effect is shown in the figure—there is an improved fit 
near the minimum but a poorer fit elsewhere. The fit 
can also be improved by decreasing the damping 
constant of the lowest frequency mode. Again there is 
improvement only over a small wavelength interval. 
Similarly, the rather square reflectivity shoulder extend­
ing from 22 to 26 /x cannot be reproduced at all by the 
classical oscillator formula without choices of damping 
constants which spoil the fit elsewhere. 

There are two separate difficulties involved in 
attempting to go beyond the classical independent 
oscillator model. One problem is to correctly describe 

on the high-frequency side of a mode. If e", the imaginary part 
of the dielectric constant, is zero here, the reflectivity will dip to 
zero. The dip then provides a sensitive measure of e" which, in 
turn, depends directly on y, the damping constant. 

3W. G. Spitzer, R. C. Miller, D. A. Kleinman, and L. E. 
Howarth, Phys. Rev. 126, 1710 (1962). 
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The independent-oscillator model fails to predict the dielectric behavior of the high-dielectric-constant 
materials BaTi03, SrTi03, and KTa0 3 in certain infrared-frequency regions near the three infrared-active 
modes. A more general classical model is proposed with mode coupling. The model has one additional param­
eter for each pair of modes that are coupled, and gives decreased (or increased) dielectric loss in certain 
regions between the modes, compared with the independent oscillator model. Very satisfactory fits to re­
flectivity data for the above materials are obtained using the coupled-mode theory. In a mechanical analog 
of the model, the coupling element may be either a spring or a dashpot, since the two cases are shown to be 
equivalent. For the above materials, however, there is a physically interesting simplification in the spring-
coupling form, since two of the otherwise arbitrary parameters are zero. The result suggests that the damp­
ing is best viewed as applying to the total polarization rather than to the individual normal modes. 
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FIG. 1. Reflectivity of SrTi03. The curves were calculated using 
three independent classical oscillators. For the dashed curve the 
damping of the oscillator at 18.4 /* was reduced approximately a 
factor of 3 to improve the fit near the reflectivity minimum. 

the frequency dependences of the damping "constant." 
The calculation of this frequency dependence4-5 involves 
the knowledge of the phonon spectrum of the crystal 
and the nature of the anharmonic interactions, and is 
beyond the scope of the present paper. 

The second difficulty concerns the independence of 
modes. In crystals having more than one k = 0 trans­
verse optical mode which interacts with light, a quan­
tum mechanical calculation shows that the damping of 
the different modes is not necessarily independent. 
The interaction of the damping of different modes can 
be represented by a classical model. This classical 
model is developed for the case of two k = 0 transverse 
phonon-optical modes in the present paper. The use of 
this model to fit the reflectivities of BaTi03 , SrTi03 , 
and K T a 0 3 produces a major improvement in the 
agreement between experiment and theory. In addition, 
it provides insight into the relation between the normal 
modes and the damping process. 

Interaction Damping—The Quantum 
Mechanical Cause 

The usual damping of optical modes is due to the 
process 

optical phonon -> several other phonons, 

induced by anharmonic terms in the lattice potential-
energy expansion. Similarly, optical absorption assoc­
iated with an optical-phonon transition is due to the 
process 

photon I - » optical phonon i —> several other phonons / 

(and similar processes involving other orders of events). 

If Eu is the matrix element for converting a photon into 
an optical phonon of type i, and Hif is the matrix 
element for converting an optical phonon i into the 
final state / , then the transition amplitude for creating 
several other phonons / via intermediate phonon i is 
given by 

HuHv/iEi-E.), 

where Ei is the energy of an optical phonon of type i, 
and Ei is the energy of the photon. This expression 
would have to be modified slightly for Ei very near E{. 
The net transition probability for getting from a photon 
to state / i s , of course, proportional to the square of the 
absolute value of the sum of the transition amplitudes 
via all intermediate states i\ that is, to 

4 M. Born and K. Huang, Dynamical Theory of Crystal Lattices 
(Clarendon Press, Oxford, 1954), Sec. 46. 

s y S Vinogradov, Fiz. Tverd. Tela 3, 1726 (1961) [English 
transl: Soviet Phys.-Solid State 3, 1249 (1961)]; R. F. Walks 
and A. A. Maradudin, Phys. Rev. 125, 1277 (1962); M. Lax, 
Phys. Chem. Solids 25, 487 (1964). 

\XiHM(Ei-Ei)\* (D 
If the contributions of different intermediate state 
phonons i were independent, this sum would necessarily 
reduce to 

-£i\HM(Ei-E%)\ (2) 

Under certain special cases, this reduction occurs; for 
example, if one term completely dominates the sum for 
a given Eh or if Hif couples one state i to states / , and 
other states i' only to / ' , i" to / " , etc. In general, 
however, (1) not (2) is the appropriate expression.6-7 In 
this general case, the optical absorption due to the wings 
of different phonon lines are not additive. I t is to be 
expected that such interference will manifest itself m 
the vicinity of £ « « £ * although simple formulas like (1) 
are then not sufficient. 

Interaction Damping—The Classical Approach 

The fundamental reason that a simple classical one-
level resonance expression for the dielectric constant 
performs as well as it does for a crystal having but one 
k = 0 optical branch is that the region of primary 
importance is relatively narrow in frequency. The 
simple classical equation of motion 

y i + r i y i + * i y i = ^ > (3) 

with P=eiyh is the most general one mode equation 
possible for the polarization P as a function of electric 
field E, if by "one mode" we mean a dielectric response 
function having only one pair of simple^ poles. For 
positive Th the system is of course dissipative. 

Let us define a two-mode dielectric response function 
as a response function having two pairs of poles. The 
most general such dielectric response function which can 
be generated from a set of equations of motion of two 
variables (consistent with all motions of the variables 

• J . J. Hopfield, Phys. Chem. Solids 22, 63; (1961). 
»&. Baym and V. Ambegaokar, Phys. Chem. Solids (to be 

published). 



A 1734 A. S. B A R K E R , J R . , A N D J . J . H O P F I E L D 

being dissipative) can be written8 

V2+T2y2+ (k2+k12)y2~k12yi=e2E, (4) 

P=y1ei+y2e2. 

Here, yi and y2 are the displacements of particles 1 and 
2. The T and k coefficients represent damping and 
restoring forces and the e coefficients, effective charge. 
The only restrictions on the real constants Th V2) ki, k2, 
&i2, eh e2 are that Fi, T2j (ki+k2+2k12), and [kik2 

+^12(^1+^2)] be positive. The usual dielectric model 
for two independent oscillators is identical to the above 
model with k\2 = 0. 

The above equations of motion can be written in the 
following equivalent way: 

x\+ (yi+yu)xi-yi2x2+o)i2x1=ZiE, 

x2+ (72+712)^2—yi2x1+o)2
2x2=z2E, (5) 

P=ZiXi+Z2X2y 

with the equivalence given by 

cos# sin#^ 

-sin# cos0^ 

(6) 

/ cosy sin0\ 
WEE( • )> 

\ — sm# cosd/ 

\xj \yj \zj \ej 

/7x+7» ya \ /rx ox 
\ yi2 7 2 + 7 1 2 / \ 0 r 2 / 

/COi2 0 \ /ki+k12 k12 \ 

) = «( )u-K 
\ 0 co2

2/ \ ki2 k2-\-ki2/ 

Such a unitary transformation which diagonalizes the 

I 

1 
# 

t 
I—VvV - 3 0 -

6;2 

AM—K 

- 3 3 -
7i 

FIG. 2. Mechanical model of two optic mode oscillators with 
interaction damping. The dashpots 71,72, and 712 provide damping 
forces proportional to velocity. 

8 To simplify notation we have included the reduced mass (m) 
of the mode in the definition of the mode amplitudes, force 
constants, and charges. In these and following equations force 
constants have dimensions of (frequency)2; damping factors and 
effective charges have dimensions of (frequency). The effective 
charges here are equal to e*/(mV)112, where e* is the usual effective 
charge defined when the local electric field is taken to be the 
macroscopic field and V is the volume of the unit cell. 

force constant matrix can always be found. 6 is given by 

c o t 2 0 + [ ( £ 2 - ^ M c o t 0 - l = O. 

The mechanical model corresponding to Eq. (5) is 
shown in Fig. 2. We can quickly see the importance of 
such a model in the present work. For a driving field 
of nearly any frequency, the three dashpots 71, y2, and 
712 shown in Fig. 2 contribute to the losses. If the two 
particles are oppositely charged there will be some 
frequency intermediate to the two resonant frequencies, 
however, where the particles move together causing the 
712 dashpot to be inactive. At this frequency the losses 
will be reduced. This is the situation we anticipate near 
21 n in SrTi03. The model originally was conceived in 
this latter form [Eq. (5)] where the mode coupling is a 
dashpot, and it has been found much easier to fit data 
with this form. Equation (4) with only harmonic-force 
coupling was found useful in checking the over-all 
dissipative nature of the solution when the negative 
7?s were encountered. Of course, an arbitrary number of 
equivalent intermediate forms could be written involv­
ing both kinds of coupling by using unitary transforma­
tions u which diagonalize neither the force-constant 
matrix nor the damping matrix. We return to the sig­
nificance of the transformation between the equivalent 
forms after obtaining the explicit solutions to Eq. (5). 

We shall search for the harmonic solutions 

E, xi, x2^eio>t. 

Inserting these dependences into Eq. (5) and solving, 
we obtain 

iooyi2z2E 
Z\E-

a>22—w2-Hco (72+712) 
Xi = 

coi2—o>2-Wco (71+712)-f 

- ( 
x2=[ Same with 

l - > 2 
o) 2

2 —^2+^(72+712) 

; ) • 

We compute the dielectric constant by adding the 
currents arising from the driven motion of each oscil­
lator plus the usual background term e^ arising from 
any much higher frequency modes such as excitons, 
and from the vacuum. 

where 
e=e0 0+47rP/E=e0 0+ei+€2, 

€1 = 4:irZiXi/E, e2 = ^TTZ2X2/E . 

Substituting, we obtain 

4:irz 12+i4:TZ iZ2ooy 12/ [co 2
2—co2+io) (72+712) ] 

€l== 

coi2—o}2+ico(7i+7i2)+co27i22/[co22—co2+tco(72+7i2)] 

(7) 

for the dielectric constant. Interchange of subscripts 
gives e2. 
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DISCUSSION 

Examining Eq. (7), we note that when 712=0 we have 
the usual noninteracting classical oscillator. If 712^0 
and 22=0 (an infrared active mode interacting with an 
infrared inactive mode) there can still be interaction 
effects on ei via the last term in the denominator. A 
third point is that the sign of the second term in the 
numerator depends on the signs of the effective charges 
of the two interacting modes. The independent mode 
formula is insensitive to the sign of the effective charges 
since only Si2 and 22

2 appear. We thus have a new method 
of analyzing ion motions for comparison with a theoret­
ical normal mode analysis if fits are carried out using 
the interacting-mode theory. Both possibilities for the 
net sign of Z1Z2 are encountered in the fits described 
below. 

Figures 3, 4, 5, and 6 show the fits obtained for 
SrTi03 , BaTi03 , and K T a 0 3 using interaction damping. 
There is a great improvement in the region that could 
not be fitted by any choice of parameters using un­
coupled oscillators. In computing the curves only two 
modes were taken to interact because of the very 
cumbersome equations for the 3 interacting mode 
case. A third classical mode was added in each case, 
however, as these perovskite structure materials all 
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FIG. 3. Interaction model fit (solid curve) to 
SrTi03 reflectivity data. 
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FIG. 6. Independent mode (dashed curve) and interacting 
mode fits to KTa03 . 

have three optically active modes. To compute the 
reflectivity R we use e= €1+62+ €3+6^, where ei and €2 
are given by Eq. (7), 

e3=47r;332/(co32—co2+iw73) (independent mode), 

and 

2?=|(l-V'«V(l+\A)|*. 

FIG. 4. Independent mode (dashed curve) and interacting 
mode fits to BaTi03. 

Table I gives the mode parameters used in each figure. 
SrTi03 does not have an anomalous reflectivity near 
178 cm - 1 so there seems no need to invoke the additional 
coupling of the two lowest frequency modes to explain 
the data. In KTa0 3 , however, there is considerable 
deviation from independent oscillator behavior at low 
frequencies. The two lowest frequency modes have been 
coupled to produce the excellent fit shown on the right-
hand side of Fig. 6. In BaTi0 3 (Fig. 5) the departure 
at low frequencies from independent mode behavior is 
small, though Ikegami et al. do show a larger effect in 
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TABLE I. Oscillator parameters used in calculations. 

1 
1 
3 
4 
4 
5b 

6 
6 
6 
7 

Fig. No. 

solid 
dashed 
solid 
dashed 
solid 
solid 
dashed 
solid (4-34/*) 
solid (40-80/x) 

Material 

SrTi03 
SrTiOa 
SrTiOs 
BaTi03 
BaTiOs 
BaTi03 
KTa03 
KTa03 
KTa03 
BaTi03 

47rZi2 

coi2 

311 
311 
311 

2000 
2000 
2000 
209 
209 
209 

same as 

COl 
(cm"1) 

88 
88 
88 
34 
34 
34 
85.1 
85.1 
85.1 

> Fig. 4-

Interacting modesa 

Ti+712 

coi 

0.4 
0.4 
0.4 
2.5 
1.7 
1.8 
0.6 
0.5 
0.45 

4:1TZ22 

0)22 

1.56 
1.56 
1.56 
1.0 
1.0 
2.0 
2.2 
2.3 
5.0 

-solid curve 

(cm"1) 

544 
544 
544 
510 
510 
183 
549 
549 
199 

72 + 712 

C02 

0.05 
0.015 
0.02 
0.06 
0.025 
0.01 
0.043 
0.040 
0.020 

712 

(o>ico2)
1/2 

0 
0 
0.09 
0 
0.21 
0.08 
0 
0.12 
0.07 

Third 
4:7TZ32 

C032 

3.6 
3.6 
3.6 
2.0 
2.0 
1.0 
5. 
5. 
2.3 

independent mode 

cos (cm"1) 

178 
178 
178 
183 
183 
510 
199 
199 
549 

73 

C03 

0.04 
0.04 
0.04 
0.03 
0.03 
0.06 
0.012 
0.012 
0.043 

Coo 

5.2 
5.2 
5.2 
5.3 
5.3 
5.3 
4.3 
4.3 
4.3 

a In cases where 712 =0, all modes are independent. The mode strength 47rzi2/wi2 is the same as 4?rpi in the notation of Ref. 3. 
b The sign of 01-02 must be taken as negative in all interaction calculations except for Fig. 5. For this case the interacting charges have the same sign. 

their far infrared results.9 We have not attempted to 
fit their data but only note that the damping interaction 
is capable of giving the required dispersion effect near 
180 cm-1 if Ziz2 is taken to be positive. 

Miller and Spitzer have shown that the reflectivity 
of KTa03 can be fit exactly with the independent 
oscillator model by allowing the damping constant of 
the lowest frequency mode to change with frequency.10 

The changes they require vary over two orders of 
magnitude. Our results cannot be directly compared 
with the Miller and Spitzer results because our Eq. (7) 
cannot be rewritten as the sum of independent oscilla­
tors with frequency-dependent damping constants. 
There is substantial agreement on the experiment 
problem. To fit the KTa03 reflectivity data, the over-all 
damping must be reduced in certain regions. Our thesis 
is that such reduction can be characterized by the 
simple model presented here and is due to an inter­
ference or competition during decay of the two (or 
more) optic phonons. It is not primarily due to details 
of the phonon spectrum.11 

In each case shown in the figures, it is the strong, 
lowest frequency mode which interacts with one of the 
other modes. The reason for this is that when the 
infrared signal has a frequency near one of the higher 
modes, the lowest frequency mode still vibrates with a 
very large amplitude even though it is far from res­
onance. If we consider the frequency to pass slowly 
through the higher mode resonance we have the ions 

9 S. Ikegami, I. Ueda, S. Kisaka, A. Mitsuishi, and H. Yoshi-
naga, J. Phys. Soc. Japan 17, 1210 (1962). 

10 R. C. Miller and W. G. Spitzer, Phys. Rev. 129, 94 (1963). 
In this work the authors have neglected resonant-frequency 
shifts which are associated with the frequency-dependent damping. 
These shifts arise in a natural way in the theory (Ref. 5) and must 
be inserted in any phenomenological expression to satisfy the 
Kramers-Kronig relations. 

11 The transition probability expression given by Eq. (1) must 
be multiplied by a density of final states and summed over the 
final-state phonon spectrum. Deviations from the independent 
oscillator model can arise from the phonon spectrum therefore in 
addition to the deviations which arise from the coupling being 
considered here. 

participating in each mode undergoing large displace­
ments first in phase then a little later, 180° out of phase. 
Thus, there will be a great difference in the losses below 
and above resonance, if there is some anharmonicity in 
bonds connecting these ions. 

The most striking feature of Eq. (7) for e is the 
behavior of ei", the lossy part of the dielectric constant 
associated with the lowest frequency mode. Near co2, 
ei" goes through a dispersion and has a negative going 
spike over a small-frequency region (see Fig. 7). Thus, 
this mode by itself is giving power to the field. The 
over-all e" is, of course, positive, but the'spike 'does 
cause the reduction in losses which is "a feature of the 
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FIG. 7. Lossy part of the dielectric constant (e") for the interac­
tion model fitted to BaTiC>3. The lower part of the figure shows e" 
for modes 1 and 2 separately, e" due to mode 3 (at 183 cm-1) 
is too small to show. 
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titanate spectrum. This effect is shown in Fig. 7 for 
BaTi03 . In the lower part of the figure the contributions 
of the two interacting modes are shown separately. The 
dispersion in ei" (which arises from the interaction 
damping) is seen to cause a reduction in the total e" 
on the low-frequency side of the mode. The effect is 
the same in SrTi03 and KTa0 3 . The appearance of a 
negative ei" does not violate any theorem on passive 
devices. The modes cannot be coupled to individually, 
so only the total field, total polarization, and total 
dielectric constant concern us. The total e" does remain 
positive. 

Different models like those corresponding to Eqs. (4) 
and (5) will of course provide the same fit to data 
since they are equivalent within a unitary transforma­
tion. These models can be of use, however, in providing 
insights into the physical system of lattice vibrations. 
In this regard, it is particularly striking to note the 
results of transforming the parameters appropriate to 
the fits in Figs. 3, 4, and 6 (solid curves) using Eq. (5), 
to the parameters for Eq. (4) where the coupling is 
represented by a spring. Table I I shows the force 
constant and damping matrices and the effective charge 
vectors for both models. We find that the equivalent 
two-mode system described by Eq. (4) (lower half of 
Table II) has one mode with all the damping (rx) and 
nearly all the charge 0i),12 but coupled by a spring to 
an undamped mode. Viewed from this representation 
not only is it possible to fit the experimental curves 
better than with the independent oscillator model, but 
two of the otherwise arbitrary parameters are in fact 
approximately zero. Said in another fashion, we find 
using this viewpoint that it is the total polarization of 
the two modes which is heavily damped. 

SUMMARY 

Fits to the reflectivity of BaTiOg, SrTi03 j and K T a 0 3 

have been considerably improved by considering the 
interaction of optic modes in a crystal during the 

TABLE II . Force constants, damping factors, and effective 
charges for the best reflectivity fits. See Eqs. (4) and (5) for 
notation. 

Force 

Damping 

Charge 

Force 

Damping 

Charge 

Diagonal force model 

C022 

Ti+712 
72+712 

712 

(4TT)1%I 

(47r)1/222 

BaTiOs 

1156 
260 000 

57.8 
12.7 
27.6 

1520 
- 5 1 0 

Diagonal damping 

61 + &12 
62 + &12 

k\2 

r2 

(470^2 

BaTi03 

48 860 
212 400 
100 400 

70.9 
- 0 . 4 a 

1592 
192 

SrTiOs 

7744 
296 000 

35.2 
10.9 
19.7 

1552 
- 6 7 9 

model 
SrTiOa 

76130 
227 000 
122 600 

46.2 
- 0 . 1 a 

1686 
162 

KTa0 3 

7242 
301 000 

42.5 
22.0 
25.9 

1230 
-833 

KTa0 3 

100 000 
208 600 
136 700 

60.2 
4.3 

1485 
2.2 

12 The squares of the effective charges should be compared 
since these determine the dielectric constant. 

a The small negative values for Tz are the result of the original reflectivity 
fit. Very small changes of the original parameters (Table I) can cause T2 to 
be zero or slightly positive without causing noticeable changes in the 
reflectivity. Theoretically, T2 must, of course, be positive. 

energy decay process. A simple classical model of the 
interaction provides in a quite natural way the reduction 
in damping at frequencies near certain optic modes. One 
parameter specifies the strength of the interaction. This 
parameter is the only additional quantity which must 
be determined in the usual process of fitting an infrared 
reflectivity spectrum. The interaction parameter may 
be represented in a mechanical model by a spring or a 
dashpot. Transformation to the spring-coupling rep­
resentation has shown that for certain modes in the 
perovskites it is the total polarization which is heavily 
damped. The interaction process is very important in 
materials with one very strong mode and several weaker 
modes such as those presented here. I t may be important 
in careful fits to any multimode crystal if variations of 
damping constants with frequency are to be studied. 


